Sains Malaysiana 54(2)(2025): 505-515

http://doi.org/10.17576/jsm-2025-5402-16

 

Perbandingan Aktiviti Fotoelektrokimia Busa Logam Nikel Selepas Olahan Haba dan Disalut dengan FE2O3 bagi Aplikasi Pembelahan Molekul Air

(Comparison of Photoelectrochemical Activities of Nickel Metal Foam After Heat Treatment and Coated with FE2O3 for Water Molecule Splitting Applications)

 

NORADIBA NORDIN1, NUR AZLINA ADRIS1, LORNA JEFFERY MINGGU1,*, KHUZAIMAH ARIFIN1, ROZAN MOHAMAD YUNUS1, MOHAMAD AZUWA MOHAMED1,2, SHARIFAH NAJIHA TIMMIATI1, WONG WAI YIN1 & MOHAMMAD B. KASSIM1,2

 

1Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Jabatan Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 27 June 2023/Accepted: 14 November 2024

 

Abstrak

Pembelahan air secara fotoelektrokimia menggunakan tenaga cahaya yang diserap oleh fotoelektrod untuk menghasilkan elektron dan lohong yang membelah molekul air kepada hidrogen dan oksigen. Bahan fotoelektrod dalam kajian ini disediakan melalui proses elektroendapan Fe2O3 di atas busa logam nikel (Ni-busa). Pembentukan NiO secara in-situ di atas Ni-busa semasa penyepuhlindapan udara menjadikannya serasi dengan Fe2O3 dan meningkatkan prestasi bahan fotoelektrod. Ketumpatan arus maksimum pada pincang voltan 1.2 V bagi Ni-busa kosong, Ni-busa olahan-haba dan Fe2O3/Ni-busa adalah 290, 150 dan 275 mA/cm2 dengan anggaran penghasilan hidrogen sebanyak 1.5, 0.8 dan 1.4 μmol/s. Fotoarus bagi Fe2O3/Ni-busa dan Ni-busa-olahan-haba adalah 20 dan 10 mA/cm2 manakala Ni-busa kosong tidak menunjukkan fotoarus. Arus gelap yang tinggi pada ketiga-tiga sampel menunjukkan aktiviti pemangkinan yang tinggi oleh elektrod berasaskan Ni-busa dalam tindak balas evolusi oksigen (OER). Walaupun Fe2O3/Ni-busa menunjukkan ketumpatan arus maksimum yang sedikit lebih rendah, pengendapan Fe2O3 mengurangkan pengoksidaan Ni dan penyinaran cahaya meningkatkan ketumpatan arus keseluruhan Fe2O3/Ni-busa hampir dengan Ni-busa kosong.

 

Kata kunci: Busa nikel; filem nipis Fe2O3/Ni-busa; fotoelektrokimia pembelahan air; kaedah elektroendapan; penghasilan fotoarus

 

Abstract

Photoelectrochemical water splitting uses light energy absorbed by photoelectrodes to generate electrons and holes that split water molecules into hydrogen and oxygen. The photoelectrodes in this study were prepared by electrodeposition of Fe2O3 onto nickel foam (Ni-foam). The in‑situ formation of NiO on Ni-foam during air annealing makes it compatible with Fe2O3 and enhances the performance of the photoelectrode material. The maximum current density at bias voltage of 1.2 V for Ni-foam-blank, Ni-foam-blank-annealed and Fe2O3/Ni-foam is 290, 150, and 275 mA/cm2, with estimated hydrogen production rates of 1.5, 0.8, and 1.4 μmol/s, respectively. The photocurrent for Fe2O3/Ni-foam and Ni-foam-blank-annealed is 20 and 10 mA/cm2, while Ni-foam-blank shows no photocurrent. The high dark current in all three samples indicates strong catalytic activity by Ni-foam based electrode in the oxygen evolution reaction (OER). Although Fe2O3/Ni-foam exhibits a slightly lower maximum current density, the deposition of Fe2O3 reduces Ni oxidation and light illumination enhances the overall current density of Fe2O3/Ni-foam bringing it closer to the current density of Ni-foam-blank.

 

Keywords: Electrodeposition method; Fe2O3 thin film; nickel foam; photocurrent generation; photoelectrochemical water splitting

 

REFERENCES

Phuan et al. 2017

Qin et al. 2019

Alsabet, M., Grden, M. & Jerkiewicz, G. 2011. Electrochemical growth of surface oxides on nickel. Part 1: Formation of α-Ni(OH)2 in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 2(4): 317-330. doi:10.1007/s12678-011-0067-9

Barzegar, F., Salehi, A. & Moloodi, A. 2019. An investigation of the effect of sintering conditions on the mechanical behavior of electroplated nickel foams. Metallurgical and Materials Transactions B 50(4): 1988-1996. doi:10.1007/s11663-019-01622-z

Cruz-Ortiz, B.R., Garcia-Lobato, M.A., Larios-Durán, E.R., Múzquiz-Ramos, E.M. & Ballesteros-Pacheco, J.C. 2016. Potentiostatic electrodeposition of nanostructured NiO thin films for their application as electrocatalyst. Journal of Electroanalytical Chemistry 772: 38-45. doi:10.1016/j.jelechem.2016.04.020

D’Amario, L., Föhlinger, J., Boschloo, G. & Hammarström, L. 2018. Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chemical Science 9(1): 223-230. doi:10.1039/C7SC03442C

Ferreira, E.B. & Jerkiewicz, G. 2021. On the electrochemical reduction of β-Ni(OH)2 to metallic nickel. Electrocatalysis 12(2): 199-209. doi:10.1007/s12678-021-00643-0

Gadisa, B.T., Baye, A.F., Appiah-Ntiamoah, R. & Kim, H. 2021. ZnO@Ni foam photoelectrode modified with heteroatom doped graphitic carbon for enhanced photoelectrochemical water splitting under solar light. International Journal of Hydrogen Energy 46(2): 2075-2085. doi:10.1016/j.ijhydene.2020.10.094

Grave, D.A., Yatom, N., Ellis, D.S., Toroker, M.C. & Rothschild, A. 2018. The “Rust” challenge: On the correlations between electronic structure, excited state dynamics, and photoelectrochemical performance of hematite photoanodes for solar water splitting. Advanced Materials 30(41): 1706577. doi.org/10.1002/adma.201706577

Gu, L., Wang, Y., Lu, R., Guan, L., Peng, X. & Sha, J. 2014. Anodic electrodeposition of a porous nickel oxide–hydroxide film on passivated nickel foam for supercapacitors. J. Mater. Chem. A 2(20): 7161-7164. doi:10.1039/C4TA00205A

Hall, D.S., Lockwood, D.J., Bock, C. & MacDougall, B.R. 2015. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471(2174): 20140792. doi:10.1098/rspa.2014.0792

Hahn, N.T., Ye, H., Flaherty, D.W., Bard, A.J. & Mullins, C.B. 2010. Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 4(4): 1977-1986.

Hu, C., Chu, K., Zhao, Y. & Teoh, W.Y. 2014. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films. ACS Applied Materials & Interfaces 6(21): 18558-18568. doi:10.1021/am507138b

Hu, X., Tian, X., Lin, Y-W. & Wang, Z. 2019. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Advances 9(54): 31563-31571. doi:10.1039/C9RA07258F

Huang, J., Yang, S., Xu, Y., Zhou, X., Jiang, X., Shi, N., Cao, D., Yin, J. & Wang, G. 2014. Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. Journal of Electroanalytical Chemistry 713: 98-102. doi:10.1016/j.jelechem.2013.12.009

Jadhav, V.V., Kore, R.M., Thorat, N.D., Yun, J.M., Kim, K.H., Mane, R.S. & O’Dwyer, C. 2018. Annealing environment effects on the electrochemical behavior of supercapacitors using Ni foam current collectors. Materials Research Express 5(12): 125004. doi:10.1088/2053-1591/aadedb

Jiang, C., Moniz, S.J.A., Wang, A., Zhang, T. & Tang, J. 2017. Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews 46(15): 4645-4660. doi:10.1039/C6CS00306K

Li, J. & Chu, D. 2018. Energy band engineering of metal oxide for enhanced visible light absorption. Multifunctional Photocatalytic Materials for Energy, disunting oleh Lin, Z., Ye, M. & Wang, M. Woodhead Publishing. hlm. 49-78. doi:10.1016/B978-0-08-101977-1.00005-3

Li, J., Meng, F., Suri, S., Ding, W., Huang, F. & Wu, N. 2012. Photoelectrochemical performance enhanced by a nickel oxide–hematite p–n junction photoanode. Chemical Communications 48(66): 8213. doi:10.1039/c2cc30376k

Liang, J., Wang, Y-Z., Wang, C-C. & Lu, S-Y. 2016. In situ formation of NiO on Ni foam prepared with a novel leaven dough method as an outstanding electrocatalyst for oxygen evolution reactions. Journal of Materials Chemistry A 4(25): 9797-9806. doi:10.1039/C6TA03729A

Lu, X. & Zhao, C. 2015. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nature Communications 6(1): 6616. doi:10.1038/ncomms7616

Mallick, P. & Dash, B.N. 2013. X-ray diffraction and UV-visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. Nanoscience and Nanotechnology 3(5): 130-134. doi:10.5923/j.nn.20130305.04

Minggu, L.J., Salehmin, M.N.I., Mohamed, M.A., Arifin, K., Yunus, R.M. & Kassim, M.B. 2020. A low overpotential photoelectrochemical reduction of carbon dioxide to methanol with highly photoactive hierarchical structured cuprous oxide. Ceramics International 46(16): 26004-26016. doi:10.1016/j.ceramint.2020.07.091

Mishra, M. & Chun, D-M. 2015. α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General 498: 126-141. doi:10.1016/j.apcata.2015.03.023

Najaf, Z., Nguyen, D.L.T., Chae, S.Y., Joo, O.S., Shah, A.U.H.A., Vo, D.V.N., Nguyen, V.H., Van Le, Q. & Rahman, G. 2021. Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. International Journal of Hydrogen Energy 46(45): 23334-23357. doi.org/10.1016/j.ijhydene.2020.07.111

Ng, K.H., Minggu, L.J., Mark-Lee, W.F., Arifin, K., Jumali, M.H.H. & Kassim, M.B. 2018. A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Materials Research Bulletin 98: 47-52. doi:10.1016/j.materresbull.2017.04.019

Niedermeier, C.A., Råsander, M., Rhode, S., Kachkanov, V., Zou, B., Alford, N. & Moram, M.A. 2016. Band gap bowing in NixMg1−xO. Scientific Reports 6(1): 31230. doi:10.1038/srep31230

Nordin, N., Ho, L-N., Ong, S-A., Ibrahim, A.H., Lee, S-L. & Ong, Y-P. 2019. Elucidating the effects of different photoanode materials on electricity generation and dye degradation in a sustainable hybrid system of photocatalytic fuel cell and peroxi-coagulation process. Chemosphere 214: 614-622. doi:10.1016/j.chemosphere.2018.09.144

Peerakiatkhajohn, P., Yun, J-H., Wang, S. & Wang, L. 2016. Review of recent progress in unassisted photoelectrochemical water splitting: From material modification to configuration design. Journal of Photonics for Energy 7(1): 012006. doi:10.1117/1.JPE.7.012006

Pérez-Alonso, F.J., Adán, C., Rojas, S., Peña, M.A. & Fierro, J.L.G. 2014. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. International Journal of Hydrogen Energy 39(10): 5204-5212. doi:10.1016/j.ijhydene.2013.12.186

Predanocy, M., Hotový, I. & Čaplovičová, M. 2017. Structural, optical and electrical properties of sputtered NiO thin films for gas detection. Applied Surface Science 395: 208-213. doi:10.1016/j.apsusc.2016.05.028

Qi, Y., Qi, H., Li, J. & Lu, C. 2008. Synthesis, microstructures and UV–vis absorption properties of β-Ni(OH)2 nanoplates and NiO nanostructures. Journal of Crystal Growth 310(18): 4221-4225. doi:10.1016/j.jcrysgro.2008.06.047

Rajendran, R., Yaakob, Z., Mat Teridi, M.A., Abd Rahaman, M.S. & Sopian, K. 2014. Preparation of nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting performance. Materials Letters 133: 123-126. doi:10.1016/j.matlet.2014.06.157

Ravikumar, P., Taparia, D. & Alagarsamy, P. 2018. Thickness-dependent thermal oxidation of Ni into NiO thin films. Journal of Superconductivity and Novel Magnetism 31(11): 3761-3775. doi:10.1007/s10948-018-4651-6

Ren, X., Xu, P., Tian, K., Cao, M., Shi, F. & Zhang, G. 2023. Peroxymonosulfate activation by CuO-Fe2O3-modified Ni foam: A1O2 dominated process for efficient and stable degradation of tetracycline. Catalysts 13(2): 329-343. doi.org/10.3390/catal13020329

Rosman, N.N., Mohamad Yunus, R., Jeffery Minggu, L., Arifin, K., Salehmin, M.N.I., Mohamed, M.A. & Kassim, M.B. 2018. Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International Journal of Hydrogen Energy 43(41): 18925-18945. doi:10.1016/j.ijhydene.2018.08.126

Rostamnejadi, A. & Bagheri, S. 2017. Optical, magnetic, and microwave properties of Ni/NiO nanoparticles. Applied Physics A 123(4): 233. doi:10.1007/s00339-017-0853-1

Salehmin, M.N.I., Jeffery Minggu, L., Mark-Lee, W.F., Mohamed, M.A., Arifin, K., Jumali, M.H.H. & Kassim, M.B. 2018. Highly photoactive Cu2O nanowire film prepared with modified scalable synthesis method for enhanced photoelectrochemical performance. Solar Energy Materials and Solar Cells 182: 237-245. doi:10.1016/j.solmat.2018.03.042

Sekizawa, K., Oh-ishi, K., Kataoka, K., Arai, T., Suzuki, T.M. & Morikawa, T. 2017. Stoichiometric water splitting using a p-type Fe2O3 based photocathode with the aid of a multi-heterojunction. Journal of Materials Chemistry A 5(14): 6483-6493. doi:10.1039/C7TA00431A

Singh, A.K. & Sarkar, D. 2018. A facile approach for preparing densely-packed individual p-NiO/n-Fe2O3 heterojunction nanowires for photoelectrochemical water splitting. Nanoscale 10(27): 13130-13139. doi:10.1039/C8NR02508H

Sobti, N., Bensouici, A., Coloma, F., Untiedt, C. & Achour, S. 2014. Structural and photoelectrochemical properties of porous TiO2 nanofibers decorated with Fe2O3 by sol-flame. Journal of Nanoparticle Research 16(8): 2577. doi:10.1007/s11051-014-2577-x

Spray, R.L. & Choi, K-S. 2009. Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chemistry of Materials 21(15): 3701-3709. doi:10.1021/cm803099k

Tamboli, S.H., Rahman, G. & Joo, O-S. 2012. Influence of potential, deposition time and annealing temperature on photoelectrochemical properties of electrodeposited iron oxide thin films. Journal of Alloys and Compounds 520: 232-237. doi:10.1016/j.jallcom.2012.01.028

Wu, P., Liu, Z., Chen, D., Zhou, M. & Wei, J. 2018. Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting. Applied Surface Science 440: 1101-1106. doi:10.1016/j.apsusc.2018.01.292

Zhao, Z., Wu, H., He, H., Xu, X. & Jin, Y. 2015. Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. Journal of Materials Chemistry A 3(13): 7179-7186. doi:10.1039/C5TA00160A

Zou, X. & Zhang, Y. 2015. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 44(15): 5148-5180. doi:10.1039/C4CS00448E

 

*Corresponding author; email: lorna_jm@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next