Sains Malaysiana 54(2)(2025): 505-515
http://doi.org/10.17576/jsm-2025-5402-16
Perbandingan Aktiviti Fotoelektrokimia Busa Logam Nikel Selepas Olahan Haba dan Disalut dengan FE2O3 bagi Aplikasi Pembelahan Molekul Air
(Comparison of Photoelectrochemical Activities
of Nickel Metal Foam After Heat Treatment and Coated with FE2O3 for Water Molecule Splitting Applications)
NORADIBA
NORDIN1, NUR AZLINA ADRIS1, LORNA JEFFERY MINGGU1,*, KHUZAIMAH ARIFIN1, ROZAN MOHAMAD
YUNUS1, MOHAMAD AZUWA MOHAMED1,2, SHARIFAH NAJIHA
TIMMIATI1, WONG WAI YIN1 & MOHAMMAD B. KASSIM1,2
1Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Jabatan Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 27 June
2023/Accepted: 14 November 2024
Abstrak
Pembelahan air secara fotoelektrokimia menggunakan tenaga cahaya yang diserap oleh fotoelektrod untuk menghasilkan elektron dan lohong yang membelah molekul air kepada hidrogen dan oksigen. Bahan fotoelektrod dalam kajian ini disediakan melalui proses elektroendapan Fe2O3 di atas busa logam nikel (Ni-busa). Pembentukan NiO secara in-situ di atas Ni-busa semasa penyepuhlindapan udara menjadikannya serasi dengan Fe2O3 dan meningkatkan prestasi bahan fotoelektrod. Ketumpatan arus maksimum pada pincang voltan 1.2 V bagi Ni-busa kosong, Ni-busa olahan-haba dan Fe2O3/Ni-busa adalah 290, 150 dan 275
mA/cm2 dengan anggaran penghasilan hidrogen sebanyak 1.5, 0.8 dan 1.4 μmol/s. Fotoarus bagi Fe2O3/Ni-busa dan Ni-busa-olahan-haba adalah 20 dan 10
mA/cm2 manakala Ni-busa kosong tidak menunjukkan fotoarus. Arus gelap yang tinggi pada ketiga-tiga sampel menunjukkan aktiviti pemangkinan yang tinggi oleh elektrod berasaskan Ni-busa dalam tindak balas evolusi oksigen (OER). Walaupun Fe2O3/Ni-busa menunjukkan ketumpatan arus maksimum yang sedikit lebih rendah, pengendapan Fe2O3 mengurangkan pengoksidaan Ni dan penyinaran cahaya meningkatkan ketumpatan arus keseluruhan Fe2O3/Ni-busa hampir dengan Ni-busa kosong.
Kata kunci: Busa nikel; filem nipis Fe2O3/Ni-busa; fotoelektrokimia pembelahan air; kaedah elektroendapan; penghasilan fotoarus
Abstract
Photoelectrochemical
water splitting uses light energy absorbed by photoelectrodes to generate
electrons and holes that split water molecules into hydrogen and oxygen. The
photoelectrodes in this study were prepared by electrodeposition of Fe2O3 onto nickel foam (Ni-foam). The in‑situ formation of NiO on Ni-foam during air annealing makes it compatible
with Fe2O3 and enhances the performance of the
photoelectrode material. The maximum current density at bias voltage of 1.2 V
for Ni-foam-blank, Ni-foam-blank-annealed and Fe2O3/Ni-foam
is 290, 150, and 275 mA/cm2, with estimated hydrogen production
rates of 1.5, 0.8, and 1.4 μmol/s, respectively.
The photocurrent for Fe2O3/Ni-foam and
Ni-foam-blank-annealed is 20 and 10 mA/cm2, while Ni-foam-blank
shows no photocurrent. The high dark current in all three samples indicates
strong catalytic activity by Ni-foam based electrode in the oxygen evolution
reaction (OER). Although Fe2O3/Ni-foam exhibits a
slightly lower maximum current density, the deposition of Fe2O3 reduces Ni oxidation and light illumination enhances the overall current
density of Fe2O3/Ni-foam bringing it closer to the
current density of Ni-foam-blank.
Keywords:
Electrodeposition method; Fe2O3 thin film; nickel foam;
photocurrent generation; photoelectrochemical water splitting
REFERENCES
Phuan et al. 2017
Qin et al. 2019
Alsabet, M., Grden, M.
& Jerkiewicz, G. 2011. Electrochemical growth of
surface oxides on nickel. Part 1: Formation of α-Ni(OH)2
in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 2(4): 317-330. doi:10.1007/s12678-011-0067-9
Barzegar, F., Salehi, A. & Moloodi,
A. 2019. An investigation of the effect of sintering conditions on the
mechanical behavior of electroplated nickel foams. Metallurgical
and Materials Transactions B 50(4): 1988-1996.
doi:10.1007/s11663-019-01622-z
Cruz-Ortiz, B.R., Garcia-Lobato, M.A.,
Larios-Durán, E.R., Múzquiz-Ramos, E.M. &
Ballesteros-Pacheco, J.C. 2016. Potentiostatic electrodeposition of nanostructured NiO thin films
for their application as electrocatalyst. Journal of Electroanalytical
Chemistry 772: 38-45. doi:10.1016/j.jelechem.2016.04.020
D’Amario, L., Föhlinger,
J., Boschloo, G. & Hammarström,
L. 2018. Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chemical Science 9(1): 223-230. doi:10.1039/C7SC03442C
Ferreira, E.B. & Jerkiewicz,
G. 2021. On the electrochemical reduction of β-Ni(OH)2 to metallic nickel. Electrocatalysis 12(2): 199-209.
doi:10.1007/s12678-021-00643-0
Gadisa, B.T., Baye,
A.F., Appiah-Ntiamoah, R. & Kim, H. 2021. ZnO@Ni foam photoelectrode modified with heteroatom doped
graphitic carbon for enhanced photoelectrochemical water splitting under solar
light. International Journal of Hydrogen Energy 46(2): 2075-2085. doi:10.1016/j.ijhydene.2020.10.094
Grave, D.A., Yatom,
N., Ellis, D.S., Toroker, M.C. & Rothschild, A.
2018. The “Rust” challenge: On the correlations between electronic structure,
excited state dynamics, and photoelectrochemical performance of hematite
photoanodes for solar water splitting. Advanced Materials 30(41):
1706577. doi.org/10.1002/adma.201706577
Gu, L., Wang, Y., Lu, R., Guan, L., Peng,
X. & Sha, J. 2014. Anodic electrodeposition of a porous nickel
oxide–hydroxide film on passivated nickel foam for supercapacitors. J.
Mater. Chem. A 2(20): 7161-7164. doi:10.1039/C4TA00205A
Hall, D.S., Lockwood, D.J., Bock, C. &
MacDougall, B.R. 2015. Nickel hydroxides and related materials: A review of
their structures, synthesis and properties. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 471(2174): 20140792.
doi:10.1098/rspa.2014.0792
Hahn, N.T., Ye, H., Flaherty, D.W., Bard,
A.J. & Mullins, C.B. 2010. Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 4(4):
1977-1986.
Hu, C., Chu, K., Zhao, Y. & Teoh, W.Y.
2014. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films. ACS Applied Materials & Interfaces 6(21): 18558-18568. doi:10.1021/am507138b
Hu, X., Tian, X., Lin, Y-W. & Wang, Z.
2019. Nickel foam and stainless steel mesh as
electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and
overall water splitting in alkaline media. RSC Advances 9(54):
31563-31571. doi:10.1039/C9RA07258F
Huang, J., Yang, S., Xu, Y., Zhou, X.,
Jiang, X., Shi, N., Cao, D., Yin, J. & Wang, G. 2014. Fe2O3 sheets grown on nickel foam as electrode material for electrochemical
capacitors. Journal of Electroanalytical Chemistry 713: 98-102. doi:10.1016/j.jelechem.2013.12.009
Jadhav, V.V., Kore, R.M., Thorat, N.D., Yun, J.M., Kim, K.H., Mane, R.S. & O’Dwyer, C. 2018. Annealing environment effects on the
electrochemical behavior of supercapacitors using Ni
foam current collectors. Materials Research Express 5(12): 125004.
doi:10.1088/2053-1591/aadedb
Jiang, C., Moniz, S.J.A., Wang, A., Zhang,
T. & Tang, J. 2017. Photoelectrochemical devices for solar water splitting
– materials and challenges. Chemical Society Reviews 46(15): 4645-4660.
doi:10.1039/C6CS00306K
Li, J. & Chu, D. 2018. Energy band
engineering of metal oxide for enhanced visible light absorption. Multifunctional
Photocatalytic Materials for Energy, disunting oleh Lin, Z., Ye, M. & Wang, M. Woodhead Publishing. hlm.
49-78. doi:10.1016/B978-0-08-101977-1.00005-3
Li, J., Meng, F., Suri, S., Ding, W.,
Huang, F. & Wu, N. 2012. Photoelectrochemical performance enhanced by a
nickel oxide–hematite p–n junction photoanode. Chemical Communications 48(66): 8213. doi:10.1039/c2cc30376k
Liang, J., Wang, Y-Z., Wang, C-C. & Lu,
S-Y. 2016. In situ formation of NiO on Ni foam
prepared with a novel leaven dough method as an outstanding electrocatalyst for
oxygen evolution reactions. Journal of Materials Chemistry A 4(25):
9797-9806. doi:10.1039/C6TA03729A
Lu, X. & Zhao, C. 2015.
Electrodeposition of hierarchically structured three-dimensional nickel–iron
electrodes for efficient oxygen evolution at high current densities. Nature
Communications 6(1): 6616. doi:10.1038/ncomms7616
Mallick, P. & Dash, B.N. 2013. X-ray
diffraction and UV-visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. Nanoscience and
Nanotechnology 3(5): 130-134. doi:10.5923/j.nn.20130305.04
Minggu, L.J., Salehmin,
M.N.I., Mohamed, M.A., Arifin, K., Yunus, R.M. & Kassim, M.B. 2020. A low overpotential photoelectrochemical
reduction of carbon dioxide to methanol with highly photoactive hierarchical
structured cuprous oxide. Ceramics International 46(16): 26004-26016. doi:10.1016/j.ceramint.2020.07.091
Mishra, M. & Chun, D-M. 2015. α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General 498: 126-141. doi:10.1016/j.apcata.2015.03.023
Najaf, Z., Nguyen, D.L.T., Chae, S.Y., Joo, O.S., Shah,
A.U.H.A., Vo, D.V.N., Nguyen, V.H., Van Le, Q.
& Rahman, G. 2021. Recent trends in development of hematite (α-Fe2O3)
as an efficient photoanode for enhancement of photoelectrochemical hydrogen
production by solar water splitting. International Journal of Hydrogen
Energy 46(45): 23334-23357. doi.org/10.1016/j.ijhydene.2020.07.111
Ng, K.H., Minggu,
L.J., Mark-Lee, W.F., Arifin, K., Jumali, M.H.H.
& Kassim, M.B. 2018. A new method for the
fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Materials
Research Bulletin 98: 47-52. doi:10.1016/j.materresbull.2017.04.019
Niedermeier, C.A., Råsander,
M., Rhode, S., Kachkanov, V., Zou, B., Alford, N.
& Moram, M.A. 2016. Band gap bowing in
NixMg1−xO. Scientific Reports 6(1): 31230. doi:10.1038/srep31230
Nordin, N., Ho, L-N., Ong, S-A., Ibrahim, A.H.,
Lee, S-L. & Ong, Y-P. 2019. Elucidating the effects of different photoanode
materials on electricity generation and dye degradation in a sustainable hybrid
system of photocatalytic fuel cell and peroxi-coagulation
process. Chemosphere 214: 614-622. doi:10.1016/j.chemosphere.2018.09.144
Peerakiatkhajohn, P., Yun, J-H., Wang, S. & Wang, L.
2016. Review of recent progress in unassisted photoelectrochemical water
splitting: From material modification to configuration design. Journal of
Photonics for Energy 7(1): 012006. doi:10.1117/1.JPE.7.012006
Pérez-Alonso, F.J., Adán,
C., Rojas, S., Peña, M.A. & Fierro, J.L.G. 2014. Ni/Fe electrodes prepared
by electrodeposition method over different substrates for oxygen evolution
reaction in alkaline medium. International Journal of Hydrogen Energy 39(10): 5204-5212. doi:10.1016/j.ijhydene.2013.12.186
Predanocy, M., Hotový, I.
& Čaplovičová, M. 2017. Structural,
optical and electrical properties of sputtered NiO thin films for gas detection. Applied Surface Science 395: 208-213. doi:10.1016/j.apsusc.2016.05.028
Qi, Y., Qi, H., Li, J. & Lu, C. 2008.
Synthesis, microstructures and UV–vis absorption properties of β-Ni(OH)2 nanoplates and NiO nanostructures. Journal of Crystal Growth 310(18): 4221-4225. doi:10.1016/j.jcrysgro.2008.06.047
Rajendran, R., Yaakob,
Z., Mat Teridi, M.A., Abd Rahaman,
M.S. & Sopian, K. 2014. Preparation of
nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting
performance. Materials Letters 133: 123-126. doi:10.1016/j.matlet.2014.06.157
Ravikumar, P., Taparia,
D. & Alagarsamy, P. 2018. Thickness-dependent
thermal oxidation of Ni into NiO thin films. Journal
of Superconductivity and Novel Magnetism 31(11): 3761-3775. doi:10.1007/s10948-018-4651-6
Ren, X., Xu, P., Tian, K., Cao, M., Shi, F.
& Zhang, G. 2023. Peroxymonosulfate activation by
CuO-Fe2O3-modified Ni foam: A1O2 dominated process for efficient and stable degradation of tetracycline. Catalysts 13(2): 329-343. doi.org/10.3390/catal13020329
Rosman, N.N., Mohamad Yunus,
R., Jeffery Minggu, L., Arifin, K., Salehmin, M.N.I., Mohamed, M.A. & Kassim,
M.B. 2018. Photocatalytic properties of two-dimensional graphene and layered
transition-metal dichalcogenides based photocatalyst for photoelectrochemical
hydrogen generation: An overview. International Journal of Hydrogen Energy 43(41): 18925-18945. doi:10.1016/j.ijhydene.2018.08.126
Rostamnejadi, A. & Bagheri, S. 2017. Optical,
magnetic, and microwave properties of Ni/NiO nanoparticles. Applied Physics A 123(4): 233. doi:10.1007/s00339-017-0853-1
Salehmin, M.N.I., Jeffery Minggu,
L., Mark-Lee, W.F., Mohamed, M.A., Arifin, K., Jumali,
M.H.H. & Kassim, M.B. 2018. Highly photoactive Cu2O
nanowire film prepared with modified scalable synthesis method for enhanced
photoelectrochemical performance. Solar Energy Materials and Solar Cells 182: 237-245. doi:10.1016/j.solmat.2018.03.042
Sekizawa, K., Oh-ishi,
K., Kataoka, K., Arai, T., Suzuki, T.M. & Morikawa, T. 2017. Stoichiometric
water splitting using a p-type Fe2O3 based photocathode
with the aid of a multi-heterojunction. Journal of Materials Chemistry A 5(14): 6483-6493. doi:10.1039/C7TA00431A
Singh, A.K. & Sarkar, D. 2018. A facile
approach for preparing densely-packed individual p-NiO/n-Fe2O3 heterojunction nanowires for photoelectrochemical water splitting. Nanoscale 10(27): 13130-13139. doi:10.1039/C8NR02508H
Sobti, N., Bensouici,
A., Coloma, F., Untiedt, C. & Achour,
S. 2014. Structural and photoelectrochemical properties of porous TiO2 nanofibers decorated with Fe2O3 by sol-flame. Journal
of Nanoparticle Research 16(8): 2577. doi:10.1007/s11051-014-2577-x
Spray, R.L. & Choi, K-S. 2009.
Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chemistry of Materials 21(15): 3701-3709. doi:10.1021/cm803099k
Tamboli, S.H., Rahman, G. & Joo, O-S. 2012. Influence of potential, deposition time and
annealing temperature on photoelectrochemical properties of electrodeposited
iron oxide thin films. Journal of Alloys and Compounds 520: 232-237. doi:10.1016/j.jallcom.2012.01.028
Wu, P., Liu, Z., Chen, D., Zhou, M. &
Wei, J. 2018. Flake-like NiO/WO3 p-n
heterojunction photocathode for photoelectrochemical water splitting. Applied
Surface Science 440: 1101-1106. doi:10.1016/j.apsusc.2018.01.292
Zhao, Z., Wu, H., He, H., Xu, X. & Jin, Y. 2015. Self-standing non-noble metal (Ni–Fe) oxide
nanotube array anode catalysts with synergistic reactivity for high-performance
water oxidation. Journal of Materials Chemistry A 3(13): 7179-7186.
doi:10.1039/C5TA00160A
Zou, X. & Zhang, Y. 2015. Noble
metal-free hydrogen evolution catalysts for water splitting. Chemical
Society Reviews 44(15): 5148-5180. doi:10.1039/C4CS00448E
*Corresponding author; email:
lorna_jm@ukm.edu.my
|